Sécurité Informatique 2021

Matière :	Niveau :	Examen :
Sécurité Informatique	2ème Année Licence	Session Normale S6
Documents non autorisés	Durée : 01h	Calculatrice scientifique autorisée.

Exercice 1:8 pts (Chiffre par transposition)

Considérons le chiffre par transposition sur l'alphabet latin de 26 lettres (de A à Z) comme l'illustre le tableau suivant. La taille de la clé = taille du bloc = 6.

Α	В	С	D	E	F	G	Н	1	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

1	6	4	3	2	5
M	E	S	S	Α	G
E	S	E	C	R	E
Т	A	C	H	1	F
F	R	E	R	P	Α
R	T	R	A	N	S
P	O	S	1	T	1
O	N				

(a) Alphabet latin avec indices.

(b) Matrice de transposition de l'exemple.

Par exemple, en utilisant la clé $\mathbf{k}=164325$ et le message clair $\mathbf{M}=$ « MESSAGE SECRET A CHIFFRER PAR TRANSPOSITION », nous obtenant le cryptogramme $\mathbf{C}=$ « METFRPO ARIPNT SCHRAI SECERS GEFASI ESARTON » comme l'illustre la matrice en haut.

- 1) Combien de clés peuvent être composées de ce cryptosystème?
- 2) Quel est le cryptogramme C correspondant au texte clair M = « MATHEMATIQUES ET INFORMATIQUE » et la clé k = « 356124 » ?

Exercice 2 : 7 pts (Objectifs de sécurité)

Soit M un message clair, E un algorithme de chiffrement symétrique, k une clé secrète partagée entre Alice et Bob, H une fonction de hachage et || l'opération de concaténation. Quels sont les objectifs de sécurité assurés dans chacun des scénarios suivants :

- 1) Alice envoie à Bob : M || H(M).
- 2) Alice envoie à Bob : $E_k(M)$.
- 3) Alice envoie à Bob : $E_k(M) \parallel H(M)$.

Exercice 2:5 pts (Questions de Cours)

- 1. Quelle est la différence entre un virus, un ver, et un espion ? (1 point)
- 2. Dressez-vous un tableau comparatif entre la cryptographie symétrique et la cryptographie asymétrique ? (2 points)
- 3. Citez trois algorithmes de chiffrement symétriques ? (1 point)
- 4. Citez trois algorithmes de chiffrement asymétriques ? (1 point)

Corrigé Type de l'examen: Sécurité Informatique

Réponse à l'exercice 1

- 1. La taille de l'espace de clés de ce cryptosystème est le nombre total de clés possibles. Puisqu'il s'agit de permutation de 6 éléments, la taille = 6 ! = 720.
- 2. Le texte clair $M = \langle MATHEMATIQUES ET INFORMATIQUE \rangle$ et la clé $k = \langle 356124 \rangle$:

3	5	6	1	2	4
M	A	T	Н	E	M
A	T	I	Q	U	E
S	E	T	Ι	N	F
0	R	M	A	T	Ι
Q	U	E			

Le cryptogramme C =« HQIA EUNT MASOQ MEFI ATERU TITME».

3. Le cryptogramme C = « USCCLSETFEIESTCSEADEXCENA » et la clé k = « 356124 » ?

Avant de procéder, il faut remarquer que la longueur du message clair est 25 et la taille de la clé est 6. Ainsi 25 = 6x4+1 et nous aurons 6 colonnes de 4 lettres et une colonne de 5 lettres (la première colonne).

3	5	6	1	2	4
F	A	С	U	L	T
E	D	Ε	S	S	C
Ι	E	N	C	E	S
E	X	A	C	T	E
S					

Le texte clair M = « FACULTE DES SCIENCES EXACTES »

Réponse à l'exercice 2

- 1. Alice envoie à Bob : M||H(M). Assurer l'intégrité uniquement.
- 2. Alice envoie à Bob : $E_k(M)$. Assurer la confidentialité uniquement.
- 3. Alice envoie à Bob : $E_k(M) || H(M)$. Assurer l'intégrité et la confidentialité.

Réponse à l'exercice 3

Voir le cours.