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Diallel analysis for secondary metabolites biosynthesis in
common bean (Phaseolus vulgaris L.) under salt stress.

Summary: To evaluate secondary metabolites productivity of common bean under salt stress, four
varieties growing in Algeria have been selected. A half-diallel cross has been carried out producing
six hybrids, the population was growing in salt conditions: 0, 50 and 100mM NacCl in a complete
randomized block design. The total phenolic and the total flavonoid content have been evaluated
and diallel analysis has been conducted to assess the best hybrids for yield and polyphenolic
biosynthesis. The results revealed high significant genotypic variations between the hybrids and
their parents. Both general and specific combining abilities were highly significant, revealing the
important role of both additive and dominant gene effects in the inheritance of these traits.
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Preface:

Salinity is one of the major abiotic stresses factors limiting plant growth, metabolism and
productivity®. In the arid and semiarid areas, salinity is mainly caused by the irrigation water which
contains considerable amounts of soluble salts; the accumulation of salts into the top layer of the
soil causing by over-irrigation; proximity to the sea and the capillarity rise of salts from
underground water into the root zone due to excessive evaporation. In addition, high evaporation
rate, poor water management and low rainfall could increase salinity levels in these areas®.

Salinity affects almost every aspects of the physiology and the biochemistry of plants and
significantly reduces yield, plants growing under saline conditions are stressed in several ways:
reduction of water potential in the root zone causing water deficit; phytotoxicity of ions caused
mainly by Na* and CI; nutrient imbalance by depression in uptake or/and shoot transport and
oxidative damage * %>,

Common bean is one of the most important legume crops; it contains considerable amounts
of protein, fiber, carbohydrates, vitamins and minerals, and represents nearly half of the consumed
grain legumes worldwide®. The presence of phytochemicals such as polyphenolic compounds
prevents various disorders like cardiovascular disease, blood glucose, obesity and colon cancer; in
addition they show high antioxidant activity’®®. Common bean is also vital in agriculture as with
nitrogen fixing bacteria, it forms root nodules via symbiotic associations®. Being a glycophyte
species, common bean sees its productivity drastically reduced at soils salinity levels more than 2
dS m™ . Thus a better understanding of physiological and biochemical responses under salinity
stress can be of value in programs conducted to breed salt tolerant crops.

A diallel cross by definition is the set of all possible matings between several genotypes.
The choice of parents is one of the most crucial aspects, when starting a genetic breeding program™*?
therefore according to Griffing™ the model I (fixed-effects) is the most appropriate for such studies.

Genetic analysis between individuals and populations are important in breeding programs that
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involve hybridization or diallel cross mating, because it is easier to identify parents that produce
heterotic progenies and results in a higher probability of obtaining superior genotypes in
segregating generations™.

Falconer™ attested that in genetic breeding programs, genetic dissimilarity is fundamentally
important in choosing genotypes to be used as parents; in addition, an inference can be made from
diallel crosses computing general combining ability of parents and specific combining ability of
hybrids*3. Such information is helpful for breeders to identify the best combiners which may be
hybridized to build up favorable fixable genes'®.

Several research have been carried out to estimate salinity stress effects on common bean,
evaluating biochemical, morphological, physiological and phenological traits®’ 18 %2025 A wel|
as for genetic analysis, including GCA, SCA, heterosis and heritability, where it has been proved
that additive and non-additive genes were controlling these traits® 2% 2% 25 26: 27 in the contrary
Igbal et al.?® and Ceyhan et al® reported that non-additive genes were more involved in some
physiological and biochemical traits.

Studies associated both diallel analysis and salinity tolerance have been carried out in many
crops e.g. barley'’, tomato®, maize®, wheat** and rice®*, while we couldn’t find in the literature
research associated both diallel analysis and salinity tolerance for common bean; hence the interest
of our research presented in this paper.

In our study, we investigated the nature of gene action influencing biochemical,
physiological and phenological traits under saline conditions using diallel cross mating. Combining
abilities of the secondary metabolites under study were evaluated, in order to better characterize
common bean response to salt stress tolerance and identify limiting factors; useful for developing
breeding strategies in order to improve both the productivity and nutritive quality of common bean
under salt stress.

1) Materials and methods :

1-1 Plant materials, cross model and growth conditions :

From six parental genotypes of common bean cultivars commonly cultivated in Algeria, four
were selected on a preliminary study based on salinity screening experiments (data not shown), and
their seed coat color (Table 1).

A one-way diallel cross excluding reciprocals was used to produce six £ hybrids during the
summer of 2016, the hybrids and their parents were first surface sterilized by immersion in 5%
(v/v) commercial Sodium hypochlorite NaClO, then rinsed three times with sterile distilled water
and germinated in moist growing medium at 25.5°C for 72 hours, at the Tennessee State
University. They were transferred in pots (24x21.8 cm) filled with growing medium (75% peat,
vermiculite, perlite, limestone, wetting agent) and grown in a growth chamber under controlled
environmental conditions. The conditions maintained during the experiments were: light duration -
14 h, temperature- 27+ 2°C and relative air humidity - 65+ 5%. A commercial fertilizer (Scotts
Miracle-Gro Product, N:P:K (24:8:16), 0.7 kg m %) was used during all the experiments.

1-2 Salt treatments :

The salt treatments: 50 mM NaCl (S1) and 100mM NaCl (S2) was applied aradually to avoid
osmotic shock by addina 25mmol/L of NaCl at the appearance of the first trifoliate every four days
until to reach the desired concentrations. The control treatment (S0) was irrigated only with water.
pH and electrical conductivity (EC) (dS m™) were measured during the experiment and maintained
at the desired levels (pH = 5.5 to 6.5; EC< 2 dS m™; EC =5 dS m™ and EC= 10 dS m™ for 0, 50
and 100mM NaCl respectively).

1-3 Polyphenolic measurements :
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Total phenolic content and total flavonoid content were evaluated as described by Heimler
et al**. For that a 0.5 g sample of ground dry seeds from each genotype was extracted with 45 mL
of 70% ethanol and adjusted to pH 2.0 with formic acid; and left for one night at room temperature.
The extracts were defatted three times using 15 mL of petroleum ether. The extracts were
evaporated to dryness under vacuum at room temperature and then redissolved in EtOH/H20
(70:30) adjusted to pH 2.0 with formic acid, to a final volume of 1 mL. All data are mean values of
three repetitions.

1-3-1 Total phenolic content:

The Folin-Ciocalteu method was used to determine the total phenolic content, described by
Heimler et al**. 0.5 mL of deionized water and 125 uL of the Folin-Ciocalteu reagent were added to
125 uL of the diluted sample extract. The mixture was allowed to stand for 6 min, after that 1.25
mL of a 7% aqueous Na,CO3 solution was added, and then adjusted to 3 mL as a final volume. The
mixture was allowed to stand for 90 min, and the absorption was measured at 760 nm against water
as a blank. The amount of total phenolics is expressed as gallic acid equivalents (GAE, mg gallic
acid/g sample) through the calibration curve of gallic acid. (R?=0.9979)

1-3-2 Total flavonid content:

The colorimetric method described by Heimler et al** was used to determine the total
flavonoid content. 75 pL of a 5% NaNO, solution, 0.150 mL of 10% AICI; solution freshly
prepared, and 0.5 mL of 1 M NaOH solution were added to 0.25 mL of the diluted samples,. The
final volume was adjusted to 2.5 mL with deionized water. The mixture was allowed to stand for 5
min, and the absorption was measured at 510 nm against the same mixture, without the sample as a
blank. The amount of total flavonoids is expressed as (+)- catechln equwalents (CE, mg (+)-
catechin/g sample) through the calibration curve of (+)-catechin. (R=0.998).

1-4 Statistical analysis :

Tukey’s HSD test was used for comparison between the treatments. The general and specific
combing abilities variances and their effects were calculated according to Griffing’s method 2 (half
diallel crosses, excluding reuprocals) n (n-1)/2, model 1(fixed effect). DlaIIeI analysis was carried-
out according to Griffing'®, numerical approach as adopted by Sharma®. ANOVA of the diallel
data set showed that the mean squares due to GCA and SCA were S|gn|f|cant for all the traits and
under all conditions except for DDM under 100 mM NacCl relative to SCA, while the GCA/SCA
ratio of mean squares for all studied traits in common bean genotypes was higher than unity (1).

2) Results :

2-1 Diallel analysis and its genetic components:

The statistical analysis revealed high significant differences among the parents and their F,
hybrids for all the traits (Table 2). In this concern the detailed analysis of general and specific
combining ability and the type of gene action was therefore appropriate for estimating the traits
investigated during the study. ANOVA of the diallel data set showed that the mean squares due to
GCA and SCA were significant for all the traits and under all conditions, while the GCA/SCA ratio
of mean squares for all studied traits in common bean genotypes was higher than unity (1).

2-2 Mean performance of parents and their hybrids :

The mean performance of the parents and their six hybrids are presented in Table 3. All the
traits under study were significantly affected by salinity. The total phenolic content increases under
moderate salt treatment for all the genotypes except the parent B, and the hybrids P,xP, and B X,
the parent P; registered the highest increase between the parental genotypes, while the hybrids
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P.XP; and B.xP, recorded the highest TPC production increase and to a lesser extent the hybrids
P, XE and P, XP;; the cross B xP, recorded the highest decrease (1.10). Under 100 mM NaCl the
parental genotype B, and the crosses P, XP., F,xP; and P.xP, registered a phenolic production increase,
the highest increase was recorded by the cross P, X% ; at the same time the hybrid p3xp4 showed the
highest decrease (2.97).

The total flavonoid content decreases under 50 mM NacCl for all the parents and hybrids
except the parent P. and the hybrids P,xP.; P.xXP; and B.xP, ; the maximum decrease and increase
were recorded in the hybrids P;x?, (0.01) and P, x?; (0.13) respectively, under 100 mM NaCl the total
flavonoid content increases for the parental genotype B. (MGT) and all the hybrids except for
P.XP, and B xP, ; the maximum increase and decrease was recorded in the hybrids P,xE (0.16) and
P, XP, (0.06) respectively.

2-3 Combining ability effects:

The magnitudes of GCA and SCA effects are indicative of the relative importance of
additive and non-additive gene actions in the inheritance of a trait, therefore we proceed to the
computation of these effects, the estimates of GCA and SCA effects for different genotypes are
listed in Table 4 and Table 5, respectively.

For total phenolic content only the parents F,(0.70) (p-value < 0.05) and F,(1.48) (p-value <
0.01) showed significant positive GCA effects under 100 mM NaCl and normal conditions
respectively, on the other hand the cross B x®, (1.34) (p-value < 0.05) recorded significant positive
SCA effects under non-saline conditions.

For total flavonoid content positive significant GCA effects were recorded for B, under
normal conditions (0.03) and 100 mM NacCl (0.05) (p-value < 0.01), while the parents . (0.04) (p-
value < 0.05) and F, (0.05) (p-value < 0.01) showed also positive significant effects under 50 mM
NaCl and non-saline conditions respectively, on the other hand according to SCA effects only the
cross B xP, (0.06) (p-value < 0.05) exhibited significant positive value under 50 mM NaCl.

3) Discussion :

Salt stress is a major environmental factor which prevents plants from attaining their
full genetic potential, in the salt sensitive common bean salinity induces several growth limitations.
All the parental genotypes and their £ hybrids showed more or less susceptibility as a response to
salt stress, this response is a complex mixture of phenological, physiological and biochemical
genetic expression; the parental genotypes P,and B, as well as the hybrids P1xP,, P1xP3 and P,xPy,
showed relative tolerance to salinity, this tolerance was expressed by a consequent reduction in
time for pods maturity, less reduction on vyield traits (data not showen) and higher production of
antioxidative compounds, and even if yield decreases causing economic losses, with appropriate
management practices these losses can be offset by the production of higher quality seed
containing considerable among of antioxidant compounds, that can be commercialized to meet the
changing demands of the market and the consumer health; in addition all statistical analysis were
highly significant under all conditions, these results demonstrate evidence of the presence of a large
genetic variability among the parents and their respective hybrids which may facilitate salt
tolerance and genetic improvement using such genetic material of common bean. These results are
in agreement with previous results for common bean and other crops*® 225 %,

The GCA varlance contains additive epistasis effect, while SCA variance contains non-
additive effects™. The analysis of variance for GCA and SCA were highly significant for all the
traits under all conditions, these results confirm that both additive and non-additive genes were
involved in controlling these characters through all common bean genotypes; on the other hand
GCA effects provide appropriate criterion for detecting the validity of genotype in hybrid
combination, while SCA effects may be related to heterosis®’. Our results revealed that GCA
effects for the traits under study were related to several SCA values of their corresponding crosses,
i.e. where the two parents P, and B, were involved, the crosses produced, namely P;xP3 and P,xP4
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recorded highly significant positive SCA effects under saline conditions, this may indicate that
additive and non-additive genetlc systems present in the crosses are acting in the same direction to
maximize the traits in view 18 these results confirmed those finding by several regearches 22,23, 25,26,

2" \while they partially contradict those reported by Igbal et al.?® and Ceyhan et al*® where they both
found significant GCA and SCA mean squares with preponderance of SCA component in their
genetic studies on common bean. The GCA/SCA ratio was higher than unity (1) under all salinity
levels; therefore the contribution of additive gene action in the genetic expression of the traits
under study is greater than the non-additive (dominant) gene action, and then the selection could be
effective for salinly tolerance through our common bean materials. These results agree with (Islam
etal®® ; Atnaf et al

And so on ....

The results of our study showed that there was a considerable genetic difference between
the four genotypes for salinity tolerance; this tolerance is genetically expressed by both additive
and non-additive gene action controlling the different biochemical traits. Therefore Améliore roza
and Coco nain were good general combiners for the polyphenolic production under different
salinity treatments. The crosses MGT x Améliore roza and Coco nain x Amina showed good

specific combing ability under different salinity level.

In conclusion, the present results revealed that several of the obtained crosses are highly
promising to be used in breeding programs of common bean cultivars which possess potentially
genetic factors for salinity tolerance; the hybrids MGT x Améliore roza and Coco nain x Amina
can increase beans productivity in saline area limiting economic loss and improving the nutritional
quality; the gain of the nutritional quality of beans produced in these area could compensate for the
economic loss.

Appendix tables and graphs

Tablel: Parental genotypes used for the study.

Parents Salinity resistance Seed shape and coat phenotype
Coco Nain (P1) Moderately resistant  Large, white with brown stripes
Amina (P2) Sensitive Small, white

MGT (P3) Moderately sensitive  Medium kidney, Dark red

Améliore Roza (P4) Moderately resistant  Large, white with red stripes

Table 2: Mean squares obtained from ANOVA and combining abilities for the studied traits.

Characters Salinity  Genotypes GCA SCA GCAJSCA Error
Level

Total phenolic content
S0 10.86** 9.21** 0.83* 11.15 0.21
s1 11.82** 7.51%** 2.16* 3.48 0.73
S2 7.25%* 3.67** 1.79** 2.05 0.23

Total flavonoid content
S0 0.02** 0.01** 0.0009** 15.12 0.0002
S1 0.02** 0.02** 0.0022* 6.84 0.0008
S2 0.01** 0.01** 0.0014* 7.87 0.0005

*, ** Significant at the 0.05 and 0.01 probability level, respectively. SO: Control, S1: 50 mM NaCl, S2: 100 mM NacCl.
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Table 3: Mean performance of parental cultivars and F1 hybrids for biochemical traits.

Genotype

Traits TPC (mg/g) TFC (mg/g)

Salt level S0 S1 S2 SO S1 S2
P1 6.05a 6.42a 5.19ab 0.22a 0.20a 0.22a
P2 3.83a 4.83a 3.35ab 0.08a 0.15b 0.10a
P3 1.44a 1.61a 1.49a 0.02a 0.00a 0.00a
P4 6.65a 6.50a 6.54a 0.23a 0.17b 0.21a
P1xP2 3.81a 4.48a 5.99b 0.15a 0.21b 0.18b
P1xP3 2.26a 2.86a 5.92b 0.08a 0.07a 0.16b
P1xP4 5.72a 4.43b 4.42b 0.15a 0.13a 0.16a
P2xP3 2.05a 4.56b 4.31b 0.05a 0.13b 0.12b
P2xP4 5.79a 6.80a 4.88ab 0.18a 0.24b 0.15c
P3xP4 5.68a 1.10b 2.97c 0.12a 0.01b 0.06¢c
mean 4.32 4.36 4,50 0.12 0.13 0.13
Tukey’s HSD test 1.13 0.038

S0: control; S1: 50 mM NaCl; S2: 100 mM NaCl. TPC : Total phenolic content; TFC: Total flavonoid content.
Values in the same row followed by the same letters do not differ significantly (Tukey’s HSD test, P < 0.05)

Table 4: Estimates of genotype general combining ability effects (GCA) for biochemical traits and its components.

Trait Total phenolic content Total flavonoid content

SO S1 S2 SO S1 S2
P1 0.37 0.47 0.70* 0.03** 0.03 0.05**
P2 -0.39 0.62 -0.11 -0.02* 0.04* -0.01
P3 -1.46**  -1.68* -1.06** -0.06** -0.07** -0.06**
P4 1.48** 0.59 0.47 0.05** 0.01 0.02
S.Eqgi 0.16 0.30 0.17 0.005 0.01 0.01
S.E gi-gj 0.26 0.49 0.28 0.01 0.02 0.01

*, ** Significant at the 0.05 and 0.01 probability level, respectively. SO: control; S1: 50 mM NaCl; S2: 100 mM NaCl. S.E:
Standard error.

Table 5: Estimates of genotype specific combining ability effects (SCA) for biochemical traits and its components.

Trait Total phenolic content Total flavonoid content

SO S1 S2 SO S1 S2
P1xP2 -0.51 -0.96 0.89 0.004 0.02 0.005
P1xP3 -0.98* -0.29 1.77** -0.02 -0.01 0.04
P1xP4 -0.46 -0.98 -1.26* -0.05** -0.04 -0.04
P2xP3 -0.42 1.26 0.97 -0.002 0.03 0.04
P2xP4 0.38 1.23 0.01 0.03 0.06* -0.001
P3xP4 1.34* -2.17*  -0.94 0.005 -0.06 -0.04
S.E sij 0.39 0.73 0.41 0.01 0.02 0.02
S.E sij-sik 0.59 1.10 0.62 0.02 0.04 0.03

*, ** Significant at the 0.05 and 0.01 probability level, respectively. SO: control; S1: 50 mM NaCl; S2: 100 mM NaCl. S.E:

Standard error.
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